Assessment & Diagnosis of ADHD:

Current Perspectives on Auditory Processing and ADHD

Aug. 11, 2001

Art Maerlender, Ph.D.
Dartmouth Medical School
Clinical School Services and Learning Disorders Program
Section of Child and Adolescent Psychiatry
Etiological Factors

- Environmental factors associated with ADHD
 - lead poisoning (other toxins)
- Chromosomal anomalies associated with ADHD
 - Fragile X, XYY syndromes
 - Turner's syndrome (45 X0)
- Neurofibromatosis
- Food additives -
 - studies have not held up
- Central nervous system infection
- Low birth weight
- Thyroid disorder
Family History

- considerable support for genetics
- often not noticed by family
- FAS
- Maternal consumption of alcohol; heavy smoking
Definition of ADHD

A persistent pattern of inattention or hyperactivity/impulsivity that is more frequent and severe than is typically observed in individuals at a comparable level of development;
Some symptoms must present before age 7;

• There is some evidence that this is not necessarily valid
• Particularly for girls
Some impairment present in at least 2 settings:

- Home
- School
- Work
- Testing situation (?)
Clear evidence of interference with developmentally appropriate behaviors

- social,
- academic or
- occupational functioning;
Exclusivity

• Does not occur exclusively during course of PDD, psychotic disorder or better accounted for by another mental disorder.
3 Sub-types

- hyperactive-impulsive
- inattentive
- mixed
Symptoms: Inattention/Disorganization

- MORE DIFFICULT TO IDENTIFY: GOOD BEHAVIOR
- Often fails to finish things
- Does not seem to listen
- Easily distracted
- Difficulty concentrating
- Difficulty organizing work, projects
- Needs a lot of supervision
- Frequently shifts activities
Symptoms:
Motor hyperactivity/impulsivity

- FREQUENTLY DIAGNOSED DUE TO CONTROL/MANAGEMENT ISSUES
H-I symptoms...

- Excessive running and climbing
- Excessive fidgeting
- Difficulty staying seated
- Motor restlessness
- Always on the go
- Acts before thinking
- Blurts out answers
- Difficulty waiting turn
Associated problems

- Academic underachievement (especially with inattentive type)
- Problematic peer relationships
- Low self-esteem
- Conduct problems
- Negative interactions with parents/teachers
Behavioral Variability

- Not evident in all situations
- Sustained attention
- Structured situations
 - first noticed in school transitions
- Primary problem:
 - INABILITY TO REGULATE BEHAVIOR
 - new situations (including changes in reinforcement schedules)
Physiological and Cognitive

- Attention is both
- A sensory response system
- A cognitive operation on those responses
Neuropsychological Basis of ADHD

• much research to point to frontal and interconnecting subcortical circuits
• models of attention also implicate frontal lobes
• convergence of evidence points to frontal lobe dysfunction
 • neuroanatomy
 • neuroimaging
 • neurochemistry
 • stimulant meds
ADHD Diagnosis reflects more than attention

- Physiological arousal
- Neurological attention
- Cognitive executive function
Arousal, Attention, and Executive Functions

- DSM-IV diagnosis confounds these constructs
- Barkley argues that the dx. Reflects executive dysfunction
- NP studies have attempted to differentiate specific functions
 - All 3 are involved
Arousal

- Also called vigilance
- Changes in brain that affect overall state
- Readiness to respond to any external or internal event
Neuroanatomy of arousal

Two systems regulate arousal levels:

- Thalamus
- Brain-stem reticular formation
Attention

- Modulation of information processing within a particular sensory modality
- Indication that changes in neuronal response (neural activity) reflect effortfulness vs automatic processing
Frontal & parietal involvement

- Associative and polymodal cortices regulate modulations of sensory input
 - Cortico-cortico interactions
Right hemisphere dominance

Ventrolateral prefrontal cortex and frontal eye fields involved in auditory and visual-spatial attention
Visual Domain

• Overlap between networks for visual-spatial orienting
 • (right parietal cortex)
• and oculomotor control
 • (frontal eye fields)
Auditory Domain

- Attention modulation in primary auditory cortex (most studies)
- Paus’ studies indicate ventrolateral prefrontal cortex, parietal cortex and secondary auditory cortex (superior temporal gyrus)
 - Not primary auditory
 - Possible confound with baseline task
Auditory Attention

- similar processing as visual
- location experiments: visual dominates
 - visual pre-cues effected RT to localize both vis. & aud. targets
 - auditory pre-cues effected only RT to auditory targets
- when vis. & aud. cues conflict, visual dominate
 - Ward, 1994
Executive Function: Barkley’s Model

- deficiencies in regulation & maintenance of behavior by rules and consequences
- problems inhibiting, initiating, sustaining responses to tasks
- problems adhering to rules or instructions
 - esp. when response contingencies are weak
Four Processes

- interactive
- alter probability of occurrence of subsequent behavioral responses
 - SELF-REGULATION
 - direct behavior toward future
1. separation of affect
2. prolongation
3. internalization
4. reconstitution
Components of the Executive System

- Gioia & Isquith
 - Awareness of one’s strengths/weaknesses
 - Set realistic goals for oneself
 - Plan and organize behavior to achieve goals
 - Initiate behavior in pursuit of goals
 - Inhibit behavior incompatible with goals
 - Monitor performance in relation to goals
 - Flexibly and strategically, shift behavior with obstacles that interfere with goal pursuit
Functional Domains of The Executive

- **Initiate**: begin task, activity, attention, language
- **Sustain**: persist for age appropriate time
- **Inhibit**: stop an action or not react to impulse
- **Shift**: move from one task or situation to another
- **Plan**: anticipate future events and develop steps
- **Organize**: establish, maintain order
- **Self-monitor**: attend to behavior/output; revise
Frontal Lobe Functions

- orbito-frontal, limbic structures
- mediates delayed responding & object permanence
- language:
 - lengthened pathways lengthens response time, provides parallel systems
 - internalized symbols expresses cognitive info (not just social communication); allows hindsight & foresight
Mirsky’s Studies: Behavioral & Psychophysiological Markers of Disordered Attention (1987)

- Factor analysis of NP tests
- 4 FACTORS FROM 10 NP TESTS
 - different brain regions support different functions
 - shared responsibility: specialization is not absolute
The factors:

1. Perceptual-motor speed: focus & execute (Trails, letter cancel, digit symbol, Stroop)
2. Vigilance - sustaining focus (CPT errors & RT)
 • Stabilize - variability of RT & commission errors
3. Numerical-mnemonic - encoding (Digit Span, Arithmetic)
4. Flexibility - shifting (WCST)
Replication of Mirsky’s model of attention with children

Mirsky’s model:
- shift (dorsolateral prefrontal)
- sustain midline thalamus, upper brainstem, reticular)
- focus-execute (superior parietal, superior temporal, basal ganglia)
- encode (hippocampus, amygdala)
Kelly’s Extension of the Mirsky Model

somewhat different than Mirsky’s factors

- although the Mirsky model also fit the data well
 - included errors
 - demonstrated significant developmental trends
 - shifting showed most growth
 - likely due to developmental changes in prefrontal cortex
Tests

- WISC-III VIQ, PIQ
- Symbol Search, Digit Span, Arithmetic, Coding
- Number Cancellation
 - hit rate, time
- CPT (Vigil/w)
 - hit rate, omissions, commissions, av. RT
- WCST
 - # correct, categories, #psv error
- Stroop Test (Golden)
 - time and errors
- Trails A & B
 - time and errors
Kelly’s 4 Factor Model

Element of Attention
- Speed of Response
- Impulsivity
- Sustain
- Shift

Factor Identity
- Information processing
- Errors in Processing
- Vigilance
- Flexibility
Speed of Response

Factor: Information Processing

Tests:
- Cancellation time,
- Coding score,
- Trails total time,
- Symbol Search score,
- Arithmetic score,
- CPT RT,
- Stroop total score
Stroop test

Appears to tap orbitofrontal
• Also implies impulse inhibition

Read the words:
Orange, purple, white

Say the colors:
XXX XXX XXX

Say the colors:
Purple, white, orange
Impulsivity

Factor: Errors in Processing

Tests:
- Symbol Search errors,
- Cancellation errors
Sustain

Factor: Vigilance

Tests:
- CPT Hit Rate,
- CPT % Errors of Commission
Shift

Factor: Flexibility

Tests:

- WCST % error
- WCST Categories

- WCST taps dorsofrontal
- Also relates to abstraction ability
Summary

- 4 factor model appears to represent attentional dysfunction in children
- Likely neurological correlation with Mirsky
Do NP Tests Identify ADHD?

Predictive Power of Neuropsychological Tests for ADHD in Children
Perugini et al, 2000
The predictive power of specific test battery

- 21 ADHD boys ADHD Combined or HI/I
- 22 normal controls
- ages 6-12
- IQ >80
Tests Administered

- thought to assess frontal lobe integrity
- consistent with theories of ADHD implicating frontal lobes in ADHD
 - Hand movements (KABC)
 - Stroop
 - COWAT - FAS
 - Trail Making A & B
 - Arithemtic & Digit Span
 - CPT (Conner’s)
Results

- only 1 test showed differences between groups:
 - CPT
- 2 of 7 tests in battery > 1.s.d. below mean
- impaired score indicated ADHD
- unimpaired score does not rule out ADHD
- 3 most sensitive tests
 - Trails B
 - Digit Span
 - CPT Index
 - multiple scores
Diagnostic Efficiency: Sensitivity

- moderate sensitivity (.62)
 - proportion who have disorder who have a positive score (indicating deficit)
 - of those who have disorder (21), how many impaired scores (13)
 - high true ‘positives’ (impaired scores)
Diagnostic Efficiency: Specificity

- strong specificity (.91)
 - non-disordered who do not have positive test score
 - of the controls, how many did not have impaired scores (did OK on test) (22)
 - high true ‘negatives’
Positive Predictive Power

- strong positive predictive power (.87)
 - proportion who receive impaired score who have disorder
 - of the impaired scores (15) how many were from ADHD (13)
- moderate overall predictive power (.77)
 - proportion correctly classified by a test score
Negative Predictive Power

- strong negative predictive power (.71)
 - proportion who do not have impaired score and who do not have disorder
 - of the non-impaired scores (did OK on test - 28), how many were in the control group (20)
- odds ratio of 16.25
 - ratio of odds of disordered individual getting impaired score to non-disordered who receive non-impaired score
Graph of Sensitivity/Specificity Stats

Diagnosis Utility

Number of Subjects

ADHD

Control

Groups

ok scores

impaired scores
Predictive Power Stats

![Predictive Power Chart]

Scores

- Impaired scores
- OK scores

Number of Subjects

- Control
- ADHD
Bottom Line...

- An OK score is not informative
 - can still have the disorder
 - a false negative
- An impaired score is a pretty good indication of ADHD (H/I or Mixed)
Summary

- CPT is most sensitive to disorder
- obtaining 2 impaired scores in battery of (these) 7 tests is good indication of the disorder
Co-Occurrence of ADHD with CAPD

- ADHD (especially sustained attention deficits) is multimodal
- to the extent that ADHD represents an inability to regulate behavior, CAPD represents a more specific dysfunction
 - deficient auditory processing can cause attention problems
- structural deficits in ADHD do include auditory processing areas
 - PT, aud. area of CC, possibly Heschel’s gyrus
Study of Comorbidity of CAPD & ADHD

- Riccio, et al. 1994
- Previous studies have shown that many kids with ADHD have CAP deficits
- 30 kids with CAPD
 - 18 had ADHD
 - Not all CAPD met criteria for ADHD
 - 26 (87%) from sample had been identified as learning disabled
 - Difficult to determine if ADHD behaviors were due to poor auditory function
Differentiating ADHD and CAPD

- Both can have attention deficits
- ADHD are an output disorders
 - Reduced rate of information processing
 - as measured by output
 - Executive dysfunction
- CAPD is an input disorder
 - Executive dysfunction as a secondary source of listening problems
<table>
<thead>
<tr>
<th>ADHD</th>
<th>CAPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inattentive</td>
<td>Difficulty hearing in bckgrnd. noise</td>
</tr>
<tr>
<td>Distracted</td>
<td>Difficulty following oral instructions</td>
</tr>
<tr>
<td>Hyperactive</td>
<td>Poor listening skills</td>
</tr>
<tr>
<td>Fidgety/restless</td>
<td>Academic difficulties</td>
</tr>
<tr>
<td>Hasty/impulsive</td>
<td>Poor auditory association skills</td>
</tr>
<tr>
<td>Inteerrupts</td>
<td>Distracted</td>
</tr>
<tr>
<td></td>
<td>Inattentive</td>
</tr>
</tbody>
</table>
Differences in Auditory Function

- See Chermak
- Possible differences in auditory functions:
 - Ear differences
 - Noise interference response
 - Word recognition errors based on acoustic or semantic properties
 - Response latencies and variability
ADHD Diagnosis rests on:

- Good history of symptoms
- Evidence across domains and/or
- Neuropsychological data
But...

- ADHD is a categorical diagnosis that does not reflect etiology;
- And does not rule out other disorders
- In fact, ADHD dx. May be secondary to many other problems/disorders
Thank you

This presentation is posted at:
www.dartmouthpsychiatry.org/healthinformation.htm
Some References