Nephrolithiasis

Alan G. Wasserstein, MD

Epidemiology and Natural History

Incidence
- 12% lifetime incidence
- Sex: male predominance
- Race: relatively rare in African Americans
- Geographic: “stone belts,” developed countries

Associated Features and Risk Factors
- Obesity and hypertension
- Diet:
 - High animal protein intake
 - Low fluid intake
 - Low calcium intake
 - High salt intake
- Hot climate or occupation
- Family history
- Medications

Recurrence
- Up to 50% at 5 years, 80% lifetime (untreated)

Clinical Features

Renal Colic
- Characteristic pain, severity, radiation
- Gastrointestinal:
 - Nausea, vomiting, ileus

Absence of peritoneal signs
- Hematuria (90%)
- Outcome:
 - 90% of stones pass spontaneously
 - Stones >5 mm less likely to pass

Radiological Assessment
- Relative diagnostic sensitivity of different modalities:
 - Computed tomography, near 100%
 - Abdominal plain film, 60% to 65%
 - Ultrasound, 10% to 25%
- Specific applications:
 - Computed tomography in acute renal colic
 - Renal ultrasound in pregnancy
 - Abdominal plain film to determine if stone is radiopaque and thus likely not uric acid

Staghorn Stones
- Definition: extend from one calyx to another
- Struvite, cystine, uric acid
- Associated with urinary tract infection, renal failure, not stone passage

Medullary Nephrocalcinosis
- Definition: calcification of renal parenchyma
- Causes:
 - Primary hyperparathyroidism
 - Distal renal tubular acidosis (RTA)
 - Medullary sponge kidney
 - Milk alkali syndrome
 - Idiopathic hypercalciuria
 - Dent’s disease, and other genetic hypercalciurias
- Associations with alkaline urine, renal failure, carbonate apatite stones

Medullary Sponge Kidney
- Clinical features:
 - Female predominance
 - Nephrolithiasis
 - Urinary tract infection
Pathogenesis:
- Congenital collecting duct dilatation
- Urinary stasis
- Diagnosis: characteristic brush appearance of papillae on intravenous urography
- Associated with nephrocalcinosis, hypercalciuria, primary hyperparathyroidism, and distal RTA, not progressive renal failure

Renal Failure
- Unusual except with nephrocalcinosis, staghorn stones, or repeated infection associated with stones
- Modest, usually nonprogressive renal injury due to recurrent stone passage
- Ureteral stricture due to stone passage or iatrogenic

Osteopenia
- Association with high bone turnover and hypercalciuria
- Mechanisms of osteopenia:
 - Hypercalciuria and low dietary calcium intake
 - Cytokine-induced bone resorption
 - Hyperparathyroidism

Urinary Tract Infection
- Stones of any type can provide nidus for secondary infection
- Urease-positive infection can promote struvite stone formation
- Infection with obstruction (eg, fever with obstructing stone) is a urological emergency
- In sepsis with ureteral obstruction and hemodynamic instability, percutaneous nephrostomy is treatment of choice

Saturation and Crystallization
- Concept of saturation (minimum activity product to support crystallization):
 - Urine supersaturated with respect to calcium oxalate in most healthy (non–stone-forming) individuals
- Concept of formation product (activity product that forces crystallization):
 - Dependence on balance of promoters and inhibitors
 - Concept of metastability (activity product between saturation and formation product)

Modes of Stone Growth
- Nucleation: process by which free ions in solution associate into microscopic particles
- Aggregation: agglomeration of large particles
- Crystal growth: movement of ions out of solution onto the growing crystal

Sites of Stone Growth
- Randall’s plaques: calcium phosphate deposits on external surface of papillae (nidus and anchor of calcium oxalate stones)
- Calcium oxalate receptors in collecting duct epithelium

Promoters and Inhibitors

Promoters
- Reduce formation product
- Uric acid: nidus for calcium oxalate nucleation
- Alkaline urine pH: favors calcium phosphate crystallization (RTA, primary hyperparathyroidism, milk alkali syndrome, carbonic anhydrase inhibitors)
- Acid urine pH: favors uric acid precipitation and cystine precipitation

Inhibitors
- Alkaline urine pH (inhibits cystine and uric acid stone formation)
- Citrate
- Pyrophosphate
- Magnesium
- Proteins: Tamm-Horsfall protein, nephrocalcin, uropontin, glycosaminoglycans

Urine Chemical Risk Factors for Calcium Stone Formation
- Increased crystalloid concentration:
 - Low urine volume
 - Hypercalciuria
 - Hyperoxaluria
- Increased promoter concentration:
 - Hyperuricosuria

MECHANISMS OF STONE FORMATION

Saturation and Crystallization
- Concept of saturation (minimum activity product to support crystallization):
 - Urine supersaturated with respect to calcium oxalate in most healthy (non–stone-forming) individuals
- Concept of formation product (activity product that forces crystallization):
 - Dependence on balance of promoters and inhibitors
 - Concept of metastability (activity product between saturation and formation product)

Modes of Stone Growth
- Nucleation: process by which free ions in solution associate into microscopic particles
- Aggregation: agglomeration of large particles
- Crystal growth: movement of ions out of solution onto the growing crystal

Sites of Stone Growth
- Randall’s plaques: calcium phosphate deposits on external surface of papillae (nidus and anchor of calcium oxalate stones)
- Calcium oxalate receptors in collecting duct epithelium

Promoters and Inhibitors

Promoters
- Reduce formation product
- Uric acid: nidus for calcium oxalate nucleation
- Alkaline urine pH: favors calcium phosphate crystallization (RTA, primary hyperparathyroidism, milk alkali syndrome, carbonic anhydrase inhibitors)
- Acid urine pH: favors uric acid precipitation and cystine precipitation

Inhibitors
- Alkaline urine pH (inhibits cystine and uric acid stone formation)
- Citrate
- Pyrophosphate
- Magnesium
- Proteins: Tamm-Horsfall protein, nephrocalcin, uropontin, glycosaminoglycans

Urine Chemical Risk Factors for Calcium Stone Formation
- Increased crystalloid concentration:
 - Low urine volume
 - Hypercalciuria
 - Hyperoxaluria
- Increased promoter concentration:
 - Hyperuricosuria
Alkaline urine pH
- Reduced inhibitor concentration
- Hypocitraturia

ADDITIONAL READING

CALCUIM NEPHROLITHIASIS

Clinical Features
- 75% to 90% of kidney stones
- Composition: calcium oxalate
 - Monohydrate or dihydrate: correlation with duration of stone formation, resistance to shock-wave lithotripsy
- Typical calcium phosphate core
- Predominant calcium phosphate (apatite or brushite) stones: uncommon; Associations with primary hyperparathyroidism and RTA
- Radiological appearance
- Characteristic calcium oxalate crystals (envelope)
- Typical stone passage rather than staghorn formation

Urinary Risk Factors for Nephrolithiasis

Low urine volume
- Sharply increased risk when urine volume < 1 L/d
- Causes of low urine volume:
 - Habitual or sociocultural low fluid intake
 - Hot climate or occupation
 - Gastrointestinal losses
 - Urinary frequency (aversion to fluid intake)
- Wine, beer, coffee, and tea may have additional benefit

Hypercalciuria
- Definitions:
 - Men, >300 mg/d
 - Women, >250 mg/d
 - Children, >4 mg/kg/d
- Incidence: about 50% of calcium stone formers
- Causes:
 - Primary hyperparathyroidism (5%), sarcoidosis, distal RTA, vitamin D intoxication, hyperthyroidism
 - Rare genetic disorders: Dent’s disease, autosomal dominant hypocalcemia
 - Idiopathic (95%)
- Primary hyperparathyroidism:
 - Hypercalcemia, sometimes subtle and variable
 - Epidemiology: middle-aged or older women
 - Pathogenesis: Increased 1,25 vitamin D synthesis due to parathyroid hormone (PTH)
 - Diagnosis: Hypercalcemia with high or inappropriately normal immunoreactive PTH
- Treatment: parathyroidectomy
- Idiopathic hypercalciuria:
 - Epidemiology:
 - Young and middle-aged men
 - May be inherited (possibly autosomal dominant) in a significant proportion
 - Associated features:
 - Affluence
 - Obesity
 - Hypertension
 - Osteopenia
 - Medullary sponge kidney
 - Nephrocalcinosis
- Pathogenesis: multiple mechanisms:
 - Intestinal calcium hyperabsorption
 - Often increased bone resorption and/or renal leak of calcium
 - Increased circulating 1,25 vitamin D and/or vitamin D receptors
 - Phosphate depletion
 - Cytokine-mediated bone resorption: abnormality of arachidonic acid metabolism
 - Excess dietary sodium: inhibits proximal sodium and calcium absorption
 - Excess dietary protein, mediated by acid load, poorly absorbed Ca-SO4 complexes, insulin, and glucagon
 - Possible role of genetic polymorphisms: calcium receptor, CLC-5 chloride channels, proximal tubular sodium phosphate transporter (NPT2a)
- Defined genetic disorders of tubular calcium reabsorption (rare):
 - Dent’s disease (chloride channel CLC-5): hypercalciuria, nephrocalcinosis, low-molecular-weight proteinuria
Autosomal dominant hypocalcemia (activating mutation of calcium sensing receptor)

Hyperoxaluria

- Incidence: 10% to 60% of stone formers (difficulties of definition and of oxalate assay)
- May be more lithogenic than calcium (calcium present in molar excess)
- Metabolism:
 - Intestinal absorption accounts for >50% of urinary oxalate, varies over 4-fold range with dietary oxalate content
 - Dietary sources: spinach, rhubarb, meat, soy products; variable bioavailability, absence of reliable data on oxalate content of foods
 - Oxalate absorption mainly in colon; role of dietary calcium to bind oxalate in intestinal lumen and reduce absorption
 - Remainder derived from endogenous production (metabolism of glyoxylate and ascorbic acid)
 - Glomerular filtration, tubular absorption, sometimes secretion (during oxalate excess)
- Pathogenesis:
 - Increased intestinal absorption:
 - High-oxalate diet
 - Low-calcium diet
 - Enteric oxaluria (inflammatory bowel disease, intestinal bypass): mechanisms:
 - Calcium bound in “soaps”
 - Increased colonic permeability
 - Deficiency of oxalate-metabolizing intestinal bacteria (Oxalobacter formigenes)
 - Treatment: oral calcium supplements, low-oxalate diet, cholestyramine; reversal of intestinal bypass
- Increased production:
 - Primary hyperoxaluria
 - Pyridoxine deficiency
 - Vitamin C (unclear significance)
- PH type I: due to mistargeting of alanine-glyoxylate aminotransferase in hepatic mitochondria

Hypocitraturia

- Incidence: 10% to 40% of calcium stone formers
- Causes:
 - Tubular reabsorption stimulated by intracellular acidosis
 - Acidosis: renal insufficiency, chronic diarrheal states, high-protein diet, RTA
 - Intracellular acidosis: potassium depletion
 - Urinary tract infection: bacterial metabolism of citrate
 - Idiopathic
- RTA type I (distal):
 - Profound hypocitraturia, hypercalciumia, alkaline urine pH
 - Carbonate apatite stones and nephrocalcinosis
 - Etiology:
 - Several defined genetic defects, one associated with deafness
 - Systemic lupus, Sjögren’s syndrome
 - Idiopathic
 - Treatment
 - Alkali (bicarbonate or citrate); potassium preferred to sodium
 - Neutralize daily acid load (1-2 mEq/kg/d); higher alkali requirement in RTA

Hyperuricosuria

- Uric acid provides crystal lattice for calcium oxalate nucleation
- Usually due to dietary purine excess
- Treatment: allopurinol

Metabolic Evaluation of Calcium Nephrolithiasis

- Indications:
 - Limited evaluation of single stone former
 - Metabolic versus anatomic activity
- Timing: 2 to 3 months after acute stone episode
- Single versus multiple urine collections
Diet: free (self selected) versus defined (eg, low calcium or low salt)
Serum studies: metabolic panel, calcium, phosphate, magnesium, PTH, vitamin D metabolites
24-hour urine studies: calcium, oxalate, citrate, uric acid, sodium, urea nitrogen or ammonia, volume
- Prior acidification to avoid loss of calcium oxalate to precipitation
- Sodium and urea nitrogen or ammonia to assess salt and protein intake
- Role of saturation measurements

Prevention of Calcium Nephrolithiasis

Systematic high fluid intake
- Proven efficacy in single stone formers:
 - Goal: urine output of at least 2 L daily
 - Benefit of specific beverages (wine, beer, coffee, tea, lemonade)
 - Risk of certain beverages (grapefruit juice, possibly dark colas)

Diet
- Moderate calcium intake:
 - Risks of calcium restriction: increased stone formation, osteopenia
 - Salt and protein restriction (hypercalciuria)
 - Low-oxalate diet (oxaluria)
 - Low-purine diet (hyperuricosuria)

Drugs of choice
- Thiazide diuretic (reduces urine calcium excretion):
 - Indications: hypercalciuria, hypertension, osteopenia; benefit also in normocalciuric stone formers
 - Mechanisms: increased renal tubular calcium absorption in proximal tubule (volume depletion) and early distal convoluted tubule (sodium chloride cotransporter [NCCT])
 - Concomitant salt restriction
 - Adverse effect: hypocitraturia (potassium depletion)
 - Potassium supplement of choice during thiazide treatment or in mixed calcium–uric acid nephrolithia

- Neutral phosphate: theoretical benefit in patients with activation of 1,25 dihydroxyvitamin D pathway (not proven in clinical trials)
- Allopurinol: hyperuricosuric normocalciuric calcium stone formers
- Magnesium: theoretical benefit, not proven in clinical trials

ADDITIONAL READING

URIC ACID STONE FORMATION

Clinical Features
- Incidence: 10% of kidney stones
- Radiolucent on plain abdominal film (unless secondarily calcified)
- Crystaluria: rhomboid or football shaped
- Occasional staghorn stone formation
- Association with gout, chronic diarrheal disease or ileostomy, diabetes, and congenital disorders of purine metabolism (rare)
Pathogenesis

- Usually (80%) persistently acid urine due to impaired renal ammoniagenesis or to chronic diarrheal disease:
 - Impaired ammoniagenesis may be due to insulin resistance
 - Acid urine pH shifts uric acid:urate equilibrium toward uric acid, which is much less soluble
- Hyperuricosuria (20%), usually due to excessive dietary purine consumption, rarely to inherited metabolic disease (eg, Lesch-Nyhan)

Treatment

- Effect of alkali (pH 6 to 7) to decrease uric acid and increase urate concentration
- Stone dissolution (unless stone is secondarily calcified); may be attempted even with acute passage of ureteral stone
- Potassium forms of alkali preferred
- Dietary purine restriction or allopurinol for hyperuricosuria

ADDITIONAL READING

INFECTION STONES

Clinical Features

- Stone composition: magnesium ammonium phosphate (struvite) and carbonate apatite (“triple phosphate”)
- Chronic or recurrent urinary tract infection, anatomic abnormality of urinary tract (neurogenic bladder, indwelling prosthetic devices)
- Renal or perinephric abscess; renal insufficiency; staghorn stone formation, not stone passage
- Crystalluria: coffin-lid crystals

Pathogenesis

- Effect of bacterial urease on ammonia production and urine pH
- Urease-positive organisms: Proteus, Klebsiella, Pseudomonas, Staphylococcus saprophyticus, rarely (if ever) Escherichia coli

Treatment

- Antibiotics: difficulty of sterilizing urine; prolonged or indefinite course
- Urological treatment: often combined endourological and extracorporeal techniques
- Urease inhibitor: acetohydroxamic acid

ADDITIONAL READING

MISCELLANEOUS STONE TYPES

- Protein matrix stones: chronic infection (with struvite stones), end-stage renal disease
- Ammonium urate stones: laxative abuse
- Xanthine and 2,8 dihydroxyadenine stones: inherited metabolic errors
- Stones composed of drugs: indinavir, sulfadiazine, triamterene
UROLOGICAL ASPECTS OF MANAGEMENT

Acute Renal Colic From Ureteral Stone

● Conservative management:
 ■ analgesics (nonsteroidal anti-inflammatory drugs such as ketorolac, narcotics)
 ■ moderate hydration
 ■ minimize ureteral spasm
● Strain urine; observation up to 4 weeks
● Indications for urgent intervention (stent or nephrostomy):
 ■ intractable pain or vomiting
 ■ urinary infection with obstruction
 ■ anuria
 ■ acute renal failure
 ■ high-grade obstruction with solitary or transplant kidney
● Role of severity and duration of obstruction, likelihood of stone passage

Urological Procedures (Nonurgent Intervention)

● Shock-wave lithotripsy:
 ■ Indications:
 ○ Larger renal pelvic stones with high risk of obstruction
 ○ Small proximal ureteral stones
 ○ Distal ureteral stones
 ■ Risks
 ■ Influence of stone composition on fragmentation
● Ureteroscopy:
 ■ Indications:
 ○ Large proximal ureteral stones
 ○ Distal ureteral stones
 ■ Ureteral stenting in pregnancy (temporizing)
 ■ Traditional (open) surgical management (rare)

ADDITIONAL READING