Acute Renal Failure
Belda Dursun, MD, and Charles L. Edelstein, MD, PhD

EPIDEMIOLOGY

- Incidence:
 - Community: Less than 1%
 - Hospital: 2% to 7%
 - Intensive care unit (ICU)/postoperative: 4% to 25%
- Risk factors for postoperative renal failure:
 - Age >70 years
 - Insulin-dependent diabetes mellitus
 - Chronic renal failure
 - Left ventricular dysfunction
- Significant associated mortality in ICU: 43% to 88%
- Independent predictor of mortality
- Factors increasing mortality:
 - Multiorgan failure
 - Respiratory failure
 - Cardiovascular dysfunction
 - Significantly longer length of hospital stay
 - Formidable health care costs

PATHOPHYSIOLOGY OF ACUTE TUBULAR NECROSIS

Vascular Factors
- Alterations in regional blood flow
- Increased sensitivity to vasoconstrictor stimuli
- Increased sensitivity to renal nerve stimuli
- Impaired autoregulation
- Endothelial injury
- Decreased nitric oxide derived from endothelial nitric oxide synthase
- Increased endothelin
- Decreased prostaglandins
- Leukocyte adhesion to endothelium

Sublethal Reversible Proximal Tubular Injury
- Cytoskeletal disruption
- Loss of polarity
- Tubular obstruction
- Abnormal gene expression

Tubular Factors

Proximal tubular necrosis
- Calcium influx
- Metalloproteases
- Oxygen radicals
- Lipid peroxidation
- Nitric oxide derived from inducible nitric oxide synthase
- Defective heat shock protein response
- Phospholipase A₂
- Calpain
- Caspase-1
- Neutrophils
- T cells

Proximal tubular apoptosis
- Caspase-3
- Endonucleases
- Insulin-like growth factor (IGF) deficiency

Inflammatory Response
- Endothelial injury and leukocyte infiltration:
 - Neutrophils
 - T lymphocytes
 - Monocyte/macrophages
- Activation of leukocytes by inflammatory mediators

Sepsis and Acute Renal Failure
- Renal vasoconstriction with intact tubular function
- Tumor necrosis factor
- Reactive oxygen species
Inducible nitric oxide synthase
Cytokines
Glomerular and vascular microthrombosis
Translation of above experimental results to patients warrants caution

MAKING THE DIAGNOSIS

Characteristic Signs
- Decrease in glomerular filtration rate (GFR) over a period of hours to days
- Failure to excrete nitrogenous waste products
- Failure to maintain fluid and electrolyte homeostasis

Clinical Diagnosis
- Increase in blood urea nitrogen only (prerenal acute renal failure [ARF])
- Increase in blood urea nitrogen and serum creatinine
- Decrease in GFR:
 - Calculated GFR:
 - Cockcroft-Gault formula (accurate only if renal function is in a steady state)
 - Measured GFR:
 - Creatinine clearance
 - Urea clearance
 - Inulin clearance (research tool)
 - Iodothalamate clearance (gold standard, expensive)
- Oliguria, <400 mL urine per day
- Serum markers of renal function (future):
 - Cystatin C
- Urine biomarkers of tubular injury (future):
 - Interleukin 18
 - Kidney injury molecule 1
 - Neutrophil gelatinase-associated lipocalin

ETIOLOGY

Prerenal Azotemia

Definition
- Acute rise in blood urea nitrogen, serum creatinine, or both
- Renal hypoperfusion
- Bland urine sediment
- Fractional excretion of sodium <1%
- Return of renal function to normal within 24 to 72 hours of correction of the hypoperfused state

Causes
- Intravascular volume depletion:
 - Hemorrhage
 - Renal fluid loss
 - Gastrointestinal losses
 - Skin loss of sweat
 - Third-space losses
- Reduced cardiac output:
 - Congestive heart failure
 - Cardiogenic shock
 - Pericardial effusion with tamponad
 - Massive pulmonary embolism
- Increased renal vascular resistance:
 - Anesthesia
 - Hepatorenal syndrome
 - Prostaglandin inhibitors
 - Aspirin
 - Nonsteroidal anti-inflammatory drugs (NSAIDs)
- Vasoconstricting drugs:
 - Cyclosporine
 - Tacrolimus
 - Radiocontrast
- Decreased intraglomerular pressure
 - Angiotensin-converting enzyme inhibitors
 - Angiotensin II receptor blockers

Postrenal Azotemia

Common denominator in this setting is obstruction to the flow of urine.

Bilateral ureteral obstruction or unilateral obstruction in a solitary kidney:
- Intraureteral:
 - Stones
 - Blood clots
 - Papillary necrosis
- Extraureteral:
 - Bladder
 - Prostatic cancer
 - Cervical cancer
 - Retroperitoneal fibrosis

Bladder neck obstruction
- Prostatic hypertrophy
- Prostatic cancer
Bladder cancer
Autonomic neuropathy
Ganglionic blocking agents: urethral obstruction
Valves
Strictures

Intrarenal or Intrinsic ARF

Vascular
- Bilateral renal artery:
 - Stenosis
 - Thrombosis
 - Embolism
 - Operative arterial cross clamping
- Bilateral renal vein
 - Thrombosis
- Small vessel
 - Atheroembolic disease
 - Thrombotic microangiopathy
 - Hemolytic uremic syndrome/thrombotic thrombocytopenic purpura
 - Scleroderma renal crisis
 - Malignant hypertension
 - Hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome
 - Postpartum ARF

Glomerular
- When ARF develops in glomerulonephritis (GN) setting, rapidly progressive GN (RPGN) should be excluded
- Histologically a RPGN manifests as a crescentic GN on kidney histology
- Causes of RPGN are classified according to immunofluorescence staining on kidney biopsy:
 - Linear immune complex deposition:
 - Goodpasture’s syndrome
 - Granular immune complex deposition:
 - Postinfectious
 - Infective endocarditis
 - Lupus nephritis
 - Immunoglobulin A (IgA) nephropathy
 - Henoch-Schönlein purpura
 - Membranoproliferative GN
 - No immune deposits:
 - Wegener’s granulomatosis
 - Polyarteritis nodosa
 - Churg Strauss
- Idiopathic crescentic GN

Interstitial
- Causes:
 - Bacterial pyelonephritis
 - Drug-induced acute allergic interstitial nephritis (AIN):
 - Antibiotics
 - Antituberculosis drugs
 - Diuretics
 - NSAIDs
 - Anticonvulsant drugs
 - Allopurinol
 - Many other drugs
 - Exogenous toxins and nephrotoxic drugs:
 - Aminoglycosides
 - Cisplatin
 - Radiocontrast
 - Ethylene glycol
 - Endogenous toxins:
 - Myoglobin (rhabdomyolysis)
 - Hemoglobin (incompatible blood transfusion, acute falciparum malaria)
 - Uric acid (acute uric acid nephropathy)

EVALUATION OF PATIENT

First Steps in Diagnosis and Treatment

Careful data tabulation and recording
- Past and current laboratory data
- Vital signs
- Daily weights
- Intake and output
- Fluid and medication review
- Did ARF develop outside hospital, in hospital but not ICU, or in ICU?
- Thorough history and physical examination

Urine Sediment
- Prerenal
- Postrenal
GN/vasculitis
• AIN
• ATN
• Ethylene glycol intoxication
• Acute uric acid nephropathy
• Obstructive uropathy due to sulfadiazine
• Rhabdomyolysis

Urine Chemistry
• Specific gravity
• Sodium
• Creatinine
• Urea nitrogen
• Osmolality

Radiology
• Renal ultrasonography (procedure most widely used)
• Isotope renography
• Computed tomography
• Cystoscopy and retrograde or anterograde pyelography

Renal Biopsy in ARF
Indications
• ARF of unknown cause
• Suspicion of GN, systemic disease (eg, vasculitis), or AIN
• ATN not recovering after 4 to 6 weeks of dialysis with no more recurrent insults

Pathology
• Not much true necrosis of tubular cells
• Tubular swelling and vacuolization
• Tubular loss of brush border
• Apical blebbing of tubular cytoplasm
• Tubular cell loss manifest as gaps in tubular epithelium
• Lack of histological findings that predict clinical outcome

Know the Clinical Features of Common Causes of ARF
• Hepatorenal syndrome
• Vasomotor ARF due to NSAIDs, cyclosporine, tacrolimus, angiotensin-converting enzyme inhibitors
• Radiographic contrast nephropathy
• Atheroembolic disease
• Thrombotic microangiopathies
• Aminoglycoside nephrotoxicity
• Rhabdomyolysis
• Acute uric acid nephropathy
• ARF in patients with acquired immunodeficiency syndrome
• ARF in bone marrow transplant patients

MANAGEMENT

General
• Management of the complications of ARF is important
• Dialysis is the only Food and Drug Administration–approved treatment
• No specific treatments of established ARF

Prerenal Azotemia
• Correct underlying disorder
• Monitor response to therapy:
 • Daily weight
 • Clinical examination of volume status
 • Central venous catheter
 • Swan-Ganz catheter

Renal or Intrinsic ARF

Conservative treatment
• Avoidance of renal-dose dopamine
• Use of diuretics to convert oliguric to nonoliguric ARF is controversial
• Avoidance of nephrotoxic drugs
• Adjustment of drug dosages based on measured or best estimate of GFR, not merely on serum creatinine
• Nutrition (enteral nutrition preferred)

Dialysis therapy
• Indications to start dialysis in ARF:
 • Not specific
 • Absolute indications:
 • Pulmonary edema unresponsive to conservative therapy
 • Hyperkalemia unresponsive to conservative therapy
 • Metabolic acidosis unresponsive to conservative therapy
 • Symptomatic uremia: encephalopathy, pericarditis
 • Individualized by nephrologic consultation
Timing of initiation of dialysis (recent studies):
- “Prophylactic” hemodialysis (HD) in chronic kidney disease patients prior to coronary artery bypass graft may have survival benefit
- “Prophylactic” continuous venovenous hemofiltration (CVVH) in high-risk patients may prevent contrast nephropathy

Dose of dialysis:
- Alternate-day HD
- Daily HD
- Continuous

Main modalities of dialysis:
- Intermittent HD (IHD)
- Continuous renal replacement therapy (CRRT):
 - CVVH
 - Continuous venovenous HD (CVVHD)
 - Continuous venovenous hemodiafiltration (CVVHDF)
 - Sustained low-efficiency daily dialysis (SLEDD)
 - Acute peritoneal dialysis (PD)
- IHD and CRRT regarded as equivalent methods for ARF treatment
- CRRT may be modality of choice in critically ill, hypotensive patients
- IHD may be used in mobile, less ill patients without hypotension
- Dialysis modality may depend on facility-specific issues:
 - Experience
 - Nursing resources
 - Cost
 - Technical proficiency
- In summary, choice of IHD versus CRRT should be individualized at nephrology consultation

Type of dialysis membrane:
- Bioincompatible:
 - Cellulose
 - Cuprophane
 - Hemophane
- Biocompatible (most widely used):
 - Polyamides
 - Polycarbonate
 - Polysulfone

Temporary vascular access:
- Internal jugular vein:
 - For longer duration
 - Lower infection risk
 - Technically more difficult to insert
 - Lower failure rate
- Femoral vein:
 - For shorter duration
 - Higher infection risk
 - Technically easier to insert
 - Higher failure rate
- Subclavian vein
 - Avoid if possible

ADDITIONAL READING