The Biology of Parkinson’s Disease and its treatments

Paola Sacchetti, Ph.D.
Assistant Professor
Director MS Neuroscience
Department of Biology
University of Hartford, CT
psacchett@hartford.edu
(860)768-5926
Involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported; with a propensity to bend the trunk forwards, and to pass from a walking to a running pace: the senses and intellects being uninjured.
"So slight and nearly imperceptible are the inroads of this malady, and so extremely slow its progress ... that the patient cannot recall the onset. The first symptoms perceived are, a slight sense of weakness with a Proneness to trembling ... most commonly in one of the hands and arms." *James Parkinson, 1817*

It was Nov. 13, 1990. He writes:
“‘I woke up to find the message in my left hand. It had me trembling. It wasn’t a fax, telegram, memo or the usual sort of missive bringing disturbing news. In fact, my hand held nothing at all. The trembling was the message.’ *Michael J. Fox, 2002 ‘Lucky Man.’*"
Cardinal symptoms:

- **Tremor** – J.M. Charcot (1825-1893)
- Bradikinesia (slowness of movement execution) – Armand Trousseau (1801-1867)
- Akinesia (inability to initiate movements)
- Postural instability
- Rigidity
What explains the motor deficits?

Degeneration of the Substantia Nigra (SN) and Ventral Tegmental Area (VTA) and projections to the Corpus Striatum (nigrostriatal pathway) for movement control.
Evaluation of dopamine function loss in PD patients

Figure 2. Progressive loss of dopamine transporter binding in a patient from diagnosis (baseline) to 46 months [59].
Today’s definition of Parkinson’s disease:

a chronic progressive neurological disease chiefly of later life that is linked to decreased dopamine production in the Substantia nigra and is marked especially by tremor of resting muscles, rigidity, slowness of movement, impaired balance, and a shuffling gait.
The Basal Ganglia

• Subcortical structures

• Several nuclei interconnected
Basal Ganglia Functions

- Motor planning, sequencing, learning, maintenance
- Initiation of willing movements
- Inhibit undesired movement and permit desired ones
- Important for movement selection process/decision to move toward...
Motor Cortex-Basal Ganglia Circuit

Motor areas
M1, PM, SMA

Cortex

Striatum

GPe

STN

GPi/SNr

Thalamus

Indirect pathway

Direct pathway

+ glutamate

- GABA
Where does DA come into play?

- M1, PM
- SMA
- Cortex
- Striatum
- Substantia nigra
- Thalamus
- GPi/SNr
Effects of loss of Dopamine from the SN on movement control
Non-motor symptoms
 (premotor?)

- Olfactory dysfunction
- Constipation
- Drowsiness
- Pain
- Anxiety- beyond the normal response to stress
- Sleep disturbances *(vivid dreams, talking and moving during night sleep)*
- Depression
PD is a really complex disease affecting several neurotransmitter circuitries.

Olfactory bulb -> non DA cells
Raphe -> serotonergic neurons
Locus ceruleus -> noradrenergic neurons
Substantia Innominata -> cholinergic neurons
Hallmark of the disease – protein aggregates

• Intracytoplasmic inclusions
 Lewy bodies (black arrows)
 Lewy neurites (white arrows)

 Konstantine Tetriakoff, 1919

• Major component: α-Synuclein
 • 140aa, synaptic protein – role: neurotransmission?
 • Molecular chaperon for SNARE
 • Genetic mutations in gene results in increased aggregates, more «sticky»

From UKPDC
A possible course of the disease

Braak et al.
Staging of brain pathology related to sporadic Parkinson’s disease

What did they look for:

Where:
- 41 individuals with clinically diagnosed PD
- 69 individuals no clinical records but detected at autopsy
- 58 age- & gender- matched controls
 - (no clinical history, no LB/LN detected at autopsy)
First signs in olfactory bulb and IX/X cranial nerves
Lesions in structures other than dopamine neurons
Until the total absence of Substantia nigra neurons
Spreading of the deposits seems to develop following a specific route
Is PD a prion-like disease?

Midbrain transplants show Lewy bodies - the disease has spread from host to transplanted cells

Pathogenesis

• Genetics
 \(\alpha\)-synuclein, PARK4, LRRK2
 Parkin, DJ-1, PINK1

• Free radicals induce mitochondria dysfunction & oxidative stress
 Complex I deficiency in cellular respiration
 Toxins - Pesticides

• Neuroinflammation
 activated microglia, pro-inflammatory cytokines, effects on neurotrophins
Lessons from Genetics

Mutations in the following genes have been correlated with development of Parkinson’s disease (mostly familiar forms):

- **SNCA** \(\alpha \)-synuclein
- **LRRK2** leucine-rich repeat kinase 2/dardarin protein; autophagy-lysosome pathway
- **UCH-L1** ubiquitin-proteasome system
- **PARKIN** mitochondria (ubiquitin-ligase)
- **DJ-1** mitochondria
- **PINK1** PD-PTEN-induced putative kinase 1; mitochondria
Mitochondrial dysfunction

Mitochondria are power houses:
- Nutrients plus oxygen to create ATP/energy via cellular respiration
- Reactive oxygen species (ROS) are toxic by-products

High energy production, low ROS; and vice versa

ROS induce oxidative stress and can damage lipids, DNA, proteins

Age, toxins, α-synuclein all contribute to ↑ROS
Why are dopaminergic neurons affected by mitochondria dysfunction?

Neurons have a high energy demand
- maintain basic requirements for recurrent firing
- refill vesicles to prevent neurotransmitter oxidation
- long distance axon transport

Neurons die if their mitochondria are compromised

Dopaminergic neurons: pacemakers, long axons, many synapses
Dopamine metabolism creates highly reactive species and dopamine can auto-oxidize (melanin deposits from oxidative breakdown of dopamine)
A unified theory?

- Mitochondrial dysfunction
 - Increased free radicals
 - Damaged proteins
 - Proteosomal dysfunction
 - Aggregates
 - Cell damage/death
 - Environmental toxins
 - Genetic defect

α-synuclein
Available and possible treatments
What are the problems in PD?

• Drugs

• Surgery

• Cell replacement therapy – stem cells

• Gene therapy *e.g. AAV-GAD, AAV-AADC*
What type of Drugs could work?

- Levodopa [+ carbidopa]
 but fluctuations and dyskinesia
- MAO inhibitors - Seleginine/Deprenyl
- Dopamine agonists - Pramipexole/Ropinirole
 but side effects
- Amantadine...? reduces dyskinesia
Surgery

Originally: Pallidotomy (tremor, rigidity, bradykinesia) and thalamotomy (Tremor)

Now: Deep Brain stimulation
Transplantations

Figure 1
Stem cell–based therapies for PD. PD leads to the progressive death of DA neurons in the substantia nigra and decreased DA innervation of the striatum, primarily the putamen. Stem cell–based approaches could be used to provide therapeutic benefits in two ways: first, by implanting stem cells modified to release growth factors, which would protect existing neurons and/or neurons derived from other stem cell treatments; and second, by transplanting stem cell–derived DA neuron precursors/neuroblasts into the putamen, where they would generate new neurons to ameliorate disease-induced motor impairments.
Transplantations

Foetal tissue transplants

Stem cells transplants

Sacchetti et al, 2009 CSC
Isolating ES cells

1. Sperm and egg join

2. Embryo develops for 5-7 days

3. Remove inner cell mass

4. Grow in dish

5. Change culture conditions to stimulate cells to differentiate into a variety of cell types

- Skin cells
- Skeletal muscle cells
- Neural cells
Ideally a hybrid would be necessary
Type of stem cells available

- **Embryonic stem cells – ESC**
 most potent capable of unlimited growth due to self-renewal; pluripotent

- **Somatic stem cells or adult stem cells**
 more fate restricted when specializing into specific tissue lineage. Some tissue are highly regenerative; multi-potent for all specialized cells within that lineage

- **Induced pluripotent stem cells – iPS**
 Reprogrammed cells appear as ESCs
 Can generate pluripotency from patients directly
 Based on 4 Transcription factors
 (oct4,myc,klf4,Sox2) linked to pluripotency
Stem cells Trials (or soon to be)

- Japan 2017 - Takahashi (GForce-PD) – *proof of principle*
 hiPSC progenitors (healthy or PD) in monkeys – ok for 2 years
 No tumors, no immuno response; integration and increase spontaneous behavior; MRI and PET scans show improvements

Future: Derived from human healthy individuals and then match immunoresponse with patients to avoid immunoresponse.

- China 2017 - Dopamine progenitor cells derived from ESCs

- US/Sweden/England - ESC-derived Dopamine neurons

- Scripps - iPSC from patients’ own skin cells to avoid immunoresponse
Other trials:

Vaccines from AffiRis, Austria (Austria/Germany/France) against alpha-synuclein AFFITOPE PD01A-03A

Phase I to test safety and immunoresponse in 36 patients (high dose/low dose/placebo) with 5 injections. Safe and good immunological response although no news on efficacy.
Biomarkers

α-synuclein in Cerebral Spinal Fluid of PD patients is lower

Rush Univ Dr Goldman

Detection of α-synuclein in CSF using α-synuclein real time quaking-induced conversion (αSyn RT-QuIC) assay that has similar sensitivity and specificity to the prion assays, but can be performed in 1–2 days with quantitation.

Blinded analysis of cerebrospinal fluid from 29 synucleinopathy cases [12 Parkinson’s and 17 dementia with Lewy bodies] and 31 non-synucleinopathy controls, including 16 Alzheimer’s cases, yielded 93% diagnostic sensitivity and 100% specificity for this test so far;

Readings and more:

- An essay on the shaking palsy, James Parkinson –
 http://www.gutenberg.org/files/23777/23777-h/23777-h.html

- Missing pieces in the Parkinson’s disease puzzle,
 Obeso et al., (2010), Nature Med. 16(6) :653-661

- Staging of brain pathology related to sporadic Parkinson’s disease,
 Braak et al., (2003), Neurobiology of ageing 24:197-211

- Parkinson’s Disease and Alpha Synuclein: Is Parkinson’s Disease a Prion-Like Disorder?

- The Case of the Frozen Addicts,

- Lucky man: a memoir,

- Does Parkinson’s begins in the gut?

- TED talk – What are stem cells? https://www.youtube.com/watch?v=evH0I7Coc54

- University of Utah - http://learn.genetics.utah.edu/content/stemcells/
Stem cells

Organs and tissues *highly specialized cells* originate from initial pool of *stem cells* formed shortly after fertilization.

“Cardinal properties of stem cells”:

- Their capacity to **self-renew** (divide in a way that generates more stem cells)
- Their capacity to **differentiate** into any cell of your body (to turn into mature, specialized cells that make up tissues and organs).
Stem cells are used for

• Understanding how genetic information is translated into tissue formation and organogenesis
 \textit{knowledge}

• Delivery of cells to diseased tissue for treatment of diseases of malformation, degeneration, trauma, genetic deficiency
 \textit{cell-based therapy and regenerative medicine}

• Cell-based assays from stem cells for drug discovery and \textit{in vitro models of disease treatments and cures}
Type of stem cells available for neuroscience

- Embryonic stem cells - *pluripotent*

 Limitations – expensive, limited % neurons of desired phenotype

- Somatic stem cells or adult stem cells – *multipotent*

 Limitations – limited differentiation potential